düsturlar sözü azərbaycan dilində

düsturlar

Yazılış

  • düsturlar • 93.3333%
  • Düsturlar • 6.6667%

* Sözün müxtəlif mətnlərdə yazılışı.

Mündəricat

OBASTAN VİKİ
Eyler düsturları
Eyler düsturu Leonard Eyler tərəfindən daxil edilmiş və onun şərəfinə adlandırılmış, kompleks eksponenti triqonometrik funksiyalarla əlaqələndirən düstur. Eyler düsturu iddia edir ki, istənilən həqiqi ədəd x {\displaystyle x} üçün aşağıdakı bərabərlik doğrudur: e i x = cos ⁡ x + i sin ⁡ x {\displaystyle ~e^{ix}=\cos x+i\sin x} , burada e {\displaystyle e} — natural loqarifmanın əsası, i {\displaystyle i} — xəyali vahid. == Törəmə düsturlar == Eyler düsturunun köməyi ilə sin {\displaystyle \sin } və cos {\displaystyle \cos } funksiyaları aşağıdakı qaydada təyin etmək olar: sin ⁡ x = e i x − e − i x 2 i {\displaystyle \sin x={\frac {e^{ix}-e^{-ix}}{2i}}} , cos ⁡ x = e i x + e − i x 2 {\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}}} . Sonra triqonometrik funksiyalara kompleks dəyişən daxil etmək olar. Tutaq ki, x = i y {\displaystyle x=iy} , onda: sin ⁡ i y = e − y − e y 2 i = i s h y {\displaystyle \sin iy={\frac {e^{-y}-e^{y}}{2i}}=i\mathop {\mathrm {sh} } \,y} , cos ⁡ i y = e − y + e y 2 = c h y {\displaystyle \cos iy={\frac {e^{-y}+e^{y}}{2}}=\mathop {\mathrm {ch} } \,y} . Beş fundamental riyazi sabiti birləşdirən məşhur Eyler eyniliyi: e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0} x = π {\displaystyle x=\pi } Eyler eyniliyinin təsadüfi hissəsidir.
Klassik mexanikadakı düsturların siyahısı
Klassik mexanika fizikanın makroskopik cisimlərin hərəkətini izah eləyən sahəsidir. Fizikanın nəzəriyyələri arasında ən geniş yayılmışıdır. Əhatə etdiyi mövzulara isə, kütlə, təcil və qüvvə aiddir. Burada hadisələrin 3 ölçülü Evklid fəzasında baş verdiyini təsəvvür eləyirlər. Klassik mexanikada çoxlu tənliklərdən istifadə olunur və başqa riyazi anlayışlardan da həmçinin. Məsələn, differensial tənliklər, Li qrupları, çoxqatlılar və erqodik nəzəriyyə və s. Bu səhifədə bunların arasında ən önəmlilərinin xülasəsi verilib Bu məqalədə əsasən Nyuton mexanikasının düsturlarını təqdim eləyir. Klassik mexanikanın daha ümumi tərtibi üçün isə analtik mexanikaya baxın (Laqranj və Hamilton mexaniklarını əhatə eləyir).
Müxtəsər vurma düsturları
Müxtəsər vurma — çoxhədlilərin hesablanmasında tez-tez istifadə edilən cəbri eynilik. ( a ± b ) 2 = a 2 ± 2 a b + b 2 {\displaystyle (a\pm b)^{2}=a^{2}\pm 2ab+b^{2}} ( a + b ) 2 = a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}} ( a − b ) 2 = a 2 − 2 a b + b 2 {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}} a 2 − b 2 = ( a − b ) ( a + b ) {\displaystyle a^{2}-b^{2}=(a-b)(a+b)} a 2 + b 2 = ( a ± b ) 2 ± 2 a b {\displaystyle a^{2}+b^{2}=(a\pm b)^{2}\pm 2ab} a 2 + b 2 = ( a + b ) 2 − 2 a b {\displaystyle a^{2}+b^{2}=(a+b)^{2}-2ab} a 2 + b 2 = ( a − b ) 2 + 2 a b {\displaystyle a^{2}+b^{2}=(a-b)^{2}+2ab} a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) {\displaystyle a^{3}\pm b^{3}=(a\pm b)(a^{2}\mp ab+b^{2})} a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})} a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})} ( a ± b ) 3 = a 3 ± 3 a 2 b + 3 a b 2 ± b 3 {\displaystyle (a\pm b)^{3}=a^{3}\pm 3a^{2}b+3ab^{2}\pm b^{3}} ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}} ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}} ( a ± b ) 4 = a 4 ± 4 a 3 b + 6 a 2 b 2 ± 4 a b 3 + b 4 {\displaystyle (a\pm b)^{4}=a^{4}\pm 4a^{3}b+6a^{2}b^{2}\pm 4ab^{3}+b^{4}} ( a + b ) 4 = a 4 + 4 a 3 b + 6 a 2 b 2 + 4 a b 3 + b 4 {\displaystyle (a+b)^{4}=a^{4}+4a^{3}b+6a^{2}b^{2}+4ab^{3}+b^{4}} ( a − b ) 4 = a 4 − 4 a 3 b + 6 a 2 b 2 − 4 a b 3 + b 4 {\displaystyle (a-b)^{4}=a^{4}-4a^{3}b+6a^{2}b^{2}-4ab^{3}+b^{4}} a 4 − b 4 = ( a 2 − b 2 ) ( a 2 + b 2 ) {\displaystyle a^{4}-b^{4}=(a^{2}-b^{2})(a^{2}+b^{2})} a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + . . . + a 2 b n − 3 + a b n − 2 + b [ log 10 ⁡ n − 1 − ] {\displaystyle a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+...+a^{2}b^{n-3}+ab^{n-2}+b[\log _{10}n-1-]} a 2 n − b 2 n = ( a + b ) ( a 2 n − 1 − a 2 n − 2 b + a 2 n − 3 b 2 − . . . − a 2 b 2 n − 3 + a b 2 n − 2 − b 2 n − 1 ) {\displaystyle a^{2n}-b^{2n}=(a+b)(a^{2n-1}-a^{2n-2}b+a^{2n-3}b^{2}-...-a^{2}b^{2n-3}+ab^{2n-2}-b^{2n-1})} , burada n ∈ N {\displaystyle n\in N} a 2 n + 1 + b 2 n + 1 = ( a + b ) ( a 2 n + a 2 n − 1 b + a 2 n − 2 b 2 − . . .
Triqonometriyanın əsas düsturları
Triqonometriyada triqonometrik eyniliklər triqonometrik funksiyaların daxil olduğu bərabərliklərdir. Həndəsi olaraq isə bu eyniliklər bir və ya bir neçə bucağın müəyyən funksiyalarını ehtiva edən eyniliklərdir. Sinus və kosinus arasındakı əsas əlaqə Pifaqorun triqonometrik eyniliyi ilə verilir: sin 2 ⁡ θ + cos 2 ⁡ θ = 1 , {\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1,} burada sin 2 ⁡ θ {\displaystyle \sin ^{2}\theta } – ( sin ⁡ θ ) 2 {\displaystyle (\sin \theta )^{2}} , cos 2 ⁡ θ {\displaystyle \cos ^{2}\theta } – ( cos ⁡ θ ) 2 {\displaystyle (\cos \theta )^{2}} deməkdir. Bu bərabərlikdən sinus və kosinusu tapmaq mümkündür: sin ⁡ θ = ± 1 − cos 2 ⁡ θ , cos ⁡ θ = ± 1 − sin 2 ⁡ θ . {\displaystyle {\begin{aligned}\sin \theta &=\pm {\sqrt {1-\cos ^{2}\theta }},\\\cos \theta &=\pm {\sqrt {1-\sin ^{2}\theta }}.\end{aligned}}} Bərabərliyin tərəflərini ayrı-ayrılıqda sinusa və kosinusa və ya hər ikisinə böldükdə aşağıdakı eyniliklər alınır: 1 + cot 2 ⁡ θ = csc 2 ⁡ θ 1 + tan 2 ⁡ θ = sec 2 ⁡ θ sec 2 ⁡ θ + csc 2 ⁡ θ = sec 2 ⁡ θ csc 2 ⁡ θ {\displaystyle {\begin{aligned}&1+\cot ^{2}\theta =\csc ^{2}\theta \\&1+\tan ^{2}\theta =\sec ^{2}\theta \\&\sec ^{2}\theta +\csc ^{2}\theta =\sec ^{2}\theta \csc ^{2}\theta \end{aligned}}} Bu eyniliklərdən istifadə edərək hər hansı bir triqonometrik funksiyanı digəri ilə ifadə etmək mümkündür: Triqonometrik funksiyaların işarəsi bucağın rübündən asılıdır. Əgər − π < θ ≤ π {\displaystyle {-\pi }<\theta \leq \pi } və sgn işarə funksiyasını ifadə edərsə, sgn ⁡ ( sin ⁡ θ ) = sgn ⁡ ( csc ⁡ θ ) = { + 1 if 0 < θ < π − 1 if − π < θ < 0 0 if θ ∈ { 0 , π } sgn ⁡ ( cos ⁡ θ ) = sgn ⁡ ( sec ⁡ θ ) = { + 1 if − 1 2 π < θ < 1 2 π − 1 if − π < θ < − 1 2 π or 1 2 π < θ < π 0 if θ ∈ { − 1 2 π , 1 2 π } sgn ⁡ ( tan ⁡ θ ) = sgn ⁡ ( cot ⁡ θ ) = { + 1 if − π < θ < − 1 2 π or 0 < θ < 1 2 π − 1 if − 1 2 π < θ < 0 or 1 2 π < θ < π 0 if θ ∈ { − 1 2 π , 0 , 1 2 π , π } {\displaystyle {\begin{aligned}\operatorname {sgn}(\sin \theta )=\operatorname {sgn}(\csc \theta )&={\begin{cases}+1&{\text{if}}\ \ 0<\theta <\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <0\\0&{\text{if}}\ \ \theta \in \{0,\pi \}\end{cases}}\\[5mu]\operatorname {sgn}(\cos \theta )=\operatorname {sgn}(\sec \theta )&={\begin{cases}+1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },{\tfrac {1}{2}}\pi {\bigr \}}\end{cases}}\\[5mu]\operatorname {sgn}(\tan \theta )=\operatorname {sgn}(\cot \theta )&={\begin{cases}+1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ 0<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <0\ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },0,{\tfrac {1}{2}}\pi ,\pi {\bigr \}}\end{cases}}\end{aligned}}} sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β {\displaystyle {\begin{aligned}\sin(\alpha +\beta )&=\sin \alpha \cos \beta +\cos \alpha \sin \beta \\\sin(\alpha -\beta )&=\sin \alpha \cos \beta -\cos \alpha \sin \beta \\\cos(\alpha +\beta )&=\cos \alpha \cos \beta -\sin \alpha \sin \beta \\\cos(\alpha -\beta )&=\cos \alpha \cos \beta +\sin \alpha \sin \beta \end{aligned}}} sin ⁡ ( α − β ) {\displaystyle \sin(\alpha -\beta )} və cos ⁡ ( α − β ) {\displaystyle \cos(\alpha -\beta )} bucaq fərqlərini " β {\displaystyle \beta } " -nı " − β {\displaystyle -\beta } " ilə əvəz etməklə və sin ⁡ ( − β ) = − sin ⁡ ( β ) {\displaystyle \sin(-\beta )=-\sin(\beta )} və cos ⁡ ( − β ) = cos ⁡ ( β ) {\displaystyle \cos(-\beta )=\cos(\beta )} faktına əsaslanaraq da tapmaq olar.

"düsturlar" sözü ilə başlayan sözlər

Oxşar sözlər

#düsturlar nədir? #düsturlar sözünün mənası #düsturlar nə deməkdir? #düsturlar sözünün izahı #düsturlar sözünün yazılışı #düsturlar necə yazılır? #düsturlar sözünün düzgün yazılışı #düsturlar leksik mənası #düsturlar sözünün sinonimi #düsturlar sözünün yaxın mənalı sözlər #düsturlar sözünün əks mənası #düsturlar sözünün etimologiyası #düsturlar sözünün orfoqrafiyası #düsturlar rusca #düsturlar inglisça #düsturlar fransızca #düsturlar sözünün istifadəsi #sözlük