Latın kvadratı
Latın kvadratı (n düzülüşlü) — L=(lij) və n × n ölçülü cədvəlin ixtiyari n elementləri ilə doldurulmuş elə bir M cədvəlinə deyilir ki, buradakı hər sətir və sütunlardakı elementlər yalnız bir dəfə istifadə olunsun. 3 sıralı latın kvadratının nümunəsi:
[
A
B
C
C
A
B
B
C
A
]
{\displaystyle {\begin{bmatrix}A&B&C\\C&A&B\\B&C&A\\\end{bmatrix}}}
Hal-hazırda M-ə bir çox həqiqi ədədlər { 1,2,…, n} və ya çoxluq { 0,1,…, n-1} daxil etmək mümkündür. Ancaq Leonard Eyler latın əlifbasının hərflərindən istifadə etdiyinə görə bu əməliyyatı Latın kvadratı adlandırmışdı
Latın kvadratları istənilən n üçün mövcuddur. Sadəcə Kelis cədvəlinin cəm qrupunun halqasını istifadə etmək kifayətdir Zn: lij= (i+j-1) mod n.
== Latın kvadratlarının tədqiqat tarixi ==
İlk dəfə latın kvadratları (4 sıralı) Misirdə Əhməd əl-Buni tərəfindən təxminən 1200-cü ildə yazılmış "Şəms əl Maarif" kitabında dərc edilmişdi.
İki ortoqonal latın kvadratı ilk dəfə 1725-ci ildə J.Ozanam tərəfindən qeyd edilmişdir.