məsafəsi sözü azərbaycan dilində

məsafəsi

Yazılış

  • məsafəsi • 98.8713%
  • Məsafəsi • 1.1287%

* Sözün müxtəlif mətnlərdə yazılışı.

Mündəricat

OBASTAN VİKİ
Evklid Məsafəsi
Evklid məsafəsi Evklid fəzasında iki nöqtə arasındaki parçanın uzunluğudur. Evklid məsafəsi Pifaqor teoremindən istifadə edərək nöqtələrin Karteziyan koordinatları vasitəsilə hesablana bilər, buna görə bəzən bu məsafə həm də Pifaqor məsafəsi adlandırırlar. Bu adlar qədim yunan riyaziyyatçıları Evklid və Pifaqorla əlaqəlidir, baxmayaraq ki, Evklid məsafələri ədədlər olaraq təmsil etmirdi və Pifaqor teoremindən istifadə edilərək məsafənin hesablanmasına bağlantı 18-ci əsrə qədər qurulmamışdı. Nöqtə olmayan iki obyekt arasındakı məsafə, adətən iki obyekt arasındakı nöqtə cütləri arasındakı ən kiçik məsafə olaraq təyin olunur. Bir nöqtədən bir xəttə olan məsafə kimi, müxtəlif növ obyektlər arasındakı məsafələrin hesablanması üçün düsturlar mövcuddur. Müasir riyaziyyatda məsafə anlayışı mücərrəd metrik fəzalara qədər ümumiləşdirilmiş və Evklid məsafəsindən başqa digər məsafələr tədqiq edilmişdir. Statistikada və optimallaşdırmadaki bəzi tətbiqlərdə məsafənin özü yerinə Evklid məsafəsinin kvadratı istifadə olunur. == Məsafə formulları == === Birölçülü === Həqiqi ədəd oxu üzərindəki istənilən iki nöqtə arasındaki məsafə həmin nöqtələrin koordinatlarının ədədi fərqinin mütləq qiymətinə bərabərdir. Belə ki, əgər p {\displaystyle p} və q {\displaystyle q} həqiqi ədəd oxu üzərindəki iki nöqtədirsə, onda bu nöqtələr arasındaki məsafə bu şəkildə verilir: d ( p , q ) = | p − q | . {\displaystyle d(p,q)=|p-q|.} Eyni qiyməti verən, lakin daha yüksək ölçülərə daha asanlıqla ümumiləşdirilə bilən daha mürəkkəb bir düstur: d ( p , q ) = ( p − q ) 2 .
Uçuş məsafəsi
Uçuş məsafəsi — təyyarələrin təkərlərini yerdən kəsmək üçün lazım olan uçuş-enmə zolağının uzunluğuna verilən addır. == Asılı olduğu xüsusiyyətləri == Uçuş məsafəsinin hesablanması təyyarənin mühərrikinin tam gücü ilə işlədiyi və flap səviyyələri uçuş səviyyəsində olduqda hesablanır. Təyyarənin nə qədər müddət yer üzərində hərəkət etdikdən sonra uçmağa başlaması Təyyarənin bütün xüsusiyyətlərindən asılı olan bir dizayn parametridir. Məsələn, eyni çəkidə daha güclü bir mühərrik bir təyyarəyə quraşdırıldıqda, qanadların təyyarəni qaldıra biləcəyi sürət daha qısa məsafədə əldə edilə bilər. Və ya təyyarənin cari çəkisi uçuş məsafəsinə təsir göstərir. Dizayn parametri olduğundan, təyyarənin ağırlığına, sürütlənməsinə və qalxmasına təsir edən hər hansı bir dəyişiklik bu parametri də dəyişdirəcəkdir. Bundan başqa, uçuş zolağının nə qədər mükəmməlliyi, hava şəraiti, uçuş-enmə zolağının yerləşdiyi yerin hündürlüyü, küləyin istiqaməti kimi xarici amillər uçuş məsafəsinə təsir edir. == Uçuş == Təyyarə qanadları təyyarənin ağırlığını tarazlayacaq bir qüvvə meydana gətirən kimi uçuş həyata keçirilir. Pilotun simmetrik olmayan qanad profillərinə müdaxiləsi lazım deyildir. Simmetrik olmayan profillərdə isə daşıyıcı qüvvə hücum bucağı ilə meydana gəldiyindən pilot hündürlük sükanı və ya digər uçuş idarəetmə vasitələrindən istifadə edə bilər.
Levenşteyn məsafəsi
Levenşteyn məsafəsi — informasiya nəzəriyyəsi, dilçilik və kompüter elmində iki ardıcıllıq arasındakı fərqi ölçmək üçün sətir ölçüsü. Qeyri-rəsmi olaraq iki söz arasındakı Levenşteyn məsafəsi bir sözü digərinə dəyişdirmək üçün tələb olunan tək simvollu redaktələrin (daxiletmə, silmə və ya əvəzetmə) minimum sayıdır. O, 1965-ci ildə bu məsafəni hesablayan sovet riyaziyyatçısı Vladimir Levenşteynin şərəfinə adlandırılıb. Levenşteyn məsafəsi "redaktə" məsafəsi də adlandırıla bilər, baxmayaraq ki, bu termin həm də ümumi olaraq redaktə məsafəsi kimi tanınan daha böyük məsafə ölçüləri ailəsini ifadə edə bilər.:32 Bu, sətir düzülüşləri ilə sıx bağlıdır. == Tərifi == İki a , b {\displaystyle a,b} sətri arasındakı Levenşteyn məsafəsi (müvafiq olaraq | a | {\displaystyle |a|} və | b | {\displaystyle |b|} uzunluğu) lev ⁡ ( a , b ) {\displaystyle \operatorname {lev} (a,b)} ilə verilir. lev ⁡ ( a , b ) = { | a | if | b | = 0 , | b | if | a | = 0 , lev ⁡ ( tail ⁡ ( a ) , tail ⁡ ( b ) ) if head ⁡ ( a ) = head ⁡ ( b ) , 1 + min { lev ⁡ ( tail ⁡ ( a ) , b ) lev ⁡ ( a , tail ⁡ ( b ) ) lev ⁡ ( tail ⁡ ( a ) , tail ⁡ ( b ) ) otherwise {\displaystyle \operatorname {lev} (a,b)={\begin{cases}|a|&{\text{ if }}|b|=0,\\|b|&{\text{ if }}|a|=0,\\\operatorname {lev} {\big (}\operatorname {tail} (a),\operatorname {tail} (b){\big )}&{\text{ if }}\operatorname {head} (a)=\operatorname {head} (b),\\1+\min {\begin{cases}\operatorname {lev} {\big (}\operatorname {tail} (a),b{\big )}\\\operatorname {lev} {\big (}a,\operatorname {tail} (b){\big )}\\\operatorname {lev} {\big (}\operatorname {tail} (a),\operatorname {tail} (b){\big )}\\\end{cases}}&{\text{ otherwise}}\end{cases}}} === Nümunə === Məsələn, "anket" və "aptek" sözləri arasındakı Levenşteyn məsafəsi 3-dür, çünki aşağıdakı 3 redaktə bir hərfi digərinə dəyişir və bunu 3-dən az redaktə ilə etmək mümkün deyil: anket → apket ("n" hərfini "p" ilə dəyişdirmək), apket → aptet ("k" hərfini "t" ilə dəyişdirmək), aptet → aptek ("t" hərfini "k" ilə dəyişdirmək). Məsafəsi 1 olan sözlərə "qaş" və "daş"ı nümunə göstərmək olar: qaş → daş ("q" hərfini "d" ilə dəyişdirmək).
Evklid məsafəsi
Evklid məsafəsi Evklid fəzasında iki nöqtə arasındaki parçanın uzunluğudur. Evklid məsafəsi Pifaqor teoremindən istifadə edərək nöqtələrin Karteziyan koordinatları vasitəsilə hesablana bilər, buna görə bəzən bu məsafə həm də Pifaqor məsafəsi adlandırırlar. Bu adlar qədim yunan riyaziyyatçıları Evklid və Pifaqorla əlaqəlidir, baxmayaraq ki, Evklid məsafələri ədədlər olaraq təmsil etmirdi və Pifaqor teoremindən istifadə edilərək məsafənin hesablanmasına bağlantı 18-ci əsrə qədər qurulmamışdı. Nöqtə olmayan iki obyekt arasındakı məsafə, adətən iki obyekt arasındakı nöqtə cütləri arasındakı ən kiçik məsafə olaraq təyin olunur. Bir nöqtədən bir xəttə olan məsafə kimi, müxtəlif növ obyektlər arasındakı məsafələrin hesablanması üçün düsturlar mövcuddur. Müasir riyaziyyatda məsafə anlayışı mücərrəd metrik fəzalara qədər ümumiləşdirilmiş və Evklid məsafəsindən başqa digər məsafələr tədqiq edilmişdir. Statistikada və optimallaşdırmadaki bəzi tətbiqlərdə məsafənin özü yerinə Evklid məsafəsinin kvadratı istifadə olunur. == Məsafə formulları == === Birölçülü === Həqiqi ədəd oxu üzərindəki istənilən iki nöqtə arasındaki məsafə həmin nöqtələrin koordinatlarının ədədi fərqinin mütləq qiymətinə bərabərdir. Belə ki, əgər p {\displaystyle p} və q {\displaystyle q} həqiqi ədəd oxu üzərindəki iki nöqtədirsə, onda bu nöqtələr arasındaki məsafə bu şəkildə verilir: d ( p , q ) = | p − q | . {\displaystyle d(p,q)=|p-q|.} Eyni qiyməti verən, lakin daha yüksək ölçülərə daha asanlıqla ümumiləşdirilə bilən daha mürəkkəb bir düstur: d ( p , q ) = ( p − q ) 2 .

"məsafəsi" sözü ilə başlayan sözlər

Oxşar sözlər

#məsafəsi nədir? #məsafəsi sözünün mənası #məsafəsi nə deməkdir? #məsafəsi sözünün izahı #məsafəsi sözünün yazılışı #məsafəsi necə yazılır? #məsafəsi sözünün düzgün yazılışı #məsafəsi leksik mənası #məsafəsi sözünün sinonimi #məsafəsi sözünün yaxın mənalı sözlər #məsafəsi sözünün əks mənası #məsafəsi sözünün etimologiyası #məsafəsi sözünün orfoqrafiyası #məsafəsi rusca #məsafəsi inglisça #məsafəsi fransızca #məsafəsi sözünün istifadəsi #sözlük