formullar sözü azərbaycan dilində

formullar

Yazılış

  • formullar • 94.5946%
  • Formullar • 5.4054%

* Sözün müxtəlif mətnlərdə yazılışı.

Mündəricat

OBASTAN VİKİ
Triqonometriyanın əsas formulları
Triqonometriyada triqonometrik eyniliklər triqonometrik funksiyaların daxil olduğu bərabərliklərdir. Həndəsi olaraq isə bu eyniliklər bir və ya bir neçə bucağın müəyyən funksiyalarını ehtiva edən eyniliklərdir. == Pifaqorun triqonometrik eynilikləri == Sinus və kosinus arasındakı əsas əlaqə Pifaqorun triqonometrik eyniliyi ilə verilir: sin 2 ⁡ θ + cos 2 ⁡ θ = 1 , {\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1,} burada sin 2 ⁡ θ {\displaystyle \sin ^{2}\theta } – ( sin ⁡ θ ) 2 {\displaystyle (\sin \theta )^{2}} , cos 2 ⁡ θ {\displaystyle \cos ^{2}\theta } – ( cos ⁡ θ ) 2 {\displaystyle (\cos \theta )^{2}} deməkdir. Bu bərabərlikdən sinus və kosinusu tapmaq mümkündür: sin ⁡ θ = ± 1 − cos 2 ⁡ θ , cos ⁡ θ = ± 1 − sin 2 ⁡ θ . {\displaystyle {\begin{aligned}\sin \theta &=\pm {\sqrt {1-\cos ^{2}\theta }},\\\cos \theta &=\pm {\sqrt {1-\sin ^{2}\theta }}.\end{aligned}}} Bərabərliyin tərəflərini ayrı-ayrılıqda sinusa və kosinusa və ya hər ikisinə böldükdə aşağıdakı eyniliklər alınır: 1 + cot 2 ⁡ θ = csc 2 ⁡ θ 1 + tan 2 ⁡ θ = sec 2 ⁡ θ sec 2 ⁡ θ + csc 2 ⁡ θ = sec 2 ⁡ θ csc 2 ⁡ θ {\displaystyle {\begin{aligned}&1+\cot ^{2}\theta =\csc ^{2}\theta \\&1+\tan ^{2}\theta =\sec ^{2}\theta \\&\sec ^{2}\theta +\csc ^{2}\theta =\sec ^{2}\theta \csc ^{2}\theta \end{aligned}}} Bu eyniliklərdən istifadə edərək hər hansı bir triqonometrik funksiyanı digəri ilə ifadə etmək mümkündür: == Çevrilmələr, yerdəyişmələr və dövrilik == === Çevrilmələr === === Dəyişmələr və dövrilik === === İşarələr === Triqonometrik funksiyaların işarəsi bucağın rübündən asılıdır. Əgər − π < θ ≤ π {\displaystyle {-\pi }<\theta \leq \pi } və sgn işarə funksiyasını ifadə edərsə, sgn ⁡ ( sin ⁡ θ ) = sgn ⁡ ( csc ⁡ θ ) = { + 1 if 0 < θ < π − 1 if − π < θ < 0 0 if θ ∈ { 0 , π } sgn ⁡ ( cos ⁡ θ ) = sgn ⁡ ( sec ⁡ θ ) = { + 1 if − 1 2 π < θ < 1 2 π − 1 if − π < θ < − 1 2 π or 1 2 π < θ < π 0 if θ ∈ { − 1 2 π , 1 2 π } sgn ⁡ ( tan ⁡ θ ) = sgn ⁡ ( cot ⁡ θ ) = { + 1 if − π < θ < − 1 2 π or 0 < θ < 1 2 π − 1 if − 1 2 π < θ < 0 or 1 2 π < θ < π 0 if θ ∈ { − 1 2 π , 0 , 1 2 π , π } {\displaystyle {\begin{aligned}\operatorname {sgn}(\sin \theta )=\operatorname {sgn}(\csc \theta )&={\begin{cases}+1&{\text{if}}\ \ 0<\theta <\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <0\\0&{\text{if}}\ \ \theta \in \{0,\pi \}\end{cases}}\\[5mu]\operatorname {sgn}(\cos \theta )=\operatorname {sgn}(\sec \theta )&={\begin{cases}+1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },{\tfrac {1}{2}}\pi {\bigr \}}\end{cases}}\\[5mu]\operatorname {sgn}(\tan \theta )=\operatorname {sgn}(\cot \theta )&={\begin{cases}+1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ 0<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <0\ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },0,{\tfrac {1}{2}}\pi ,\pi {\bigr \}}\end{cases}}\end{aligned}}} == Bucaqların cəmi və fərqi üçün eyniliklər == sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β {\displaystyle {\begin{aligned}\sin(\alpha +\beta )&=\sin \alpha \cos \beta +\cos \alpha \sin \beta \\\sin(\alpha -\beta )&=\sin \alpha \cos \beta -\cos \alpha \sin \beta \\\cos(\alpha +\beta )&=\cos \alpha \cos \beta -\sin \alpha \sin \beta \\\cos(\alpha -\beta )&=\cos \alpha \cos \beta +\sin \alpha \sin \beta \end{aligned}}} sin ⁡ ( α − β ) {\displaystyle \sin(\alpha -\beta )} və cos ⁡ ( α − β ) {\displaystyle \cos(\alpha -\beta )} bucaq fərqlərini " β {\displaystyle \beta } " -nı " − β {\displaystyle -\beta } " ilə əvəz etməklə və sin ⁡ ( − β ) = − sin ⁡ ( β ) {\displaystyle \sin(-\beta )=-\sin(\beta )} və cos ⁡ ( − β ) = cos ⁡ ( β ) {\displaystyle \cos(-\beta )=\cos(\beta )} faktına əsaslanaraq da tapmaq olar.

"formullar" sözü ilə başlayan sözlər

Oxşar sözlər

#formullar nədir? #formullar sözünün mənası #formullar nə deməkdir? #formullar sözünün izahı #formullar sözünün yazılışı #formullar necə yazılır? #formullar sözünün düzgün yazılışı #formullar leksik mənası #formullar sözünün sinonimi #formullar sözünün yaxın mənalı sözlər #formullar sözünün əks mənası #formullar sözünün etimologiyası #formullar sözünün orfoqrafiyası #formullar rusca #formullar inglisça #formullar fransızca #formullar sözünün istifadəsi #sözlük