formulları sözü azərbaycan dilində

formulları

Yazılış

  • formulları • 93.3333%
  • Formulları • 6.6667%

* Sözün müxtəlif mətnlərdə yazılışı.

Mündəricat

OBASTAN VİKİ
Triqonometriyanın əsas formulları
Triqonometriyada triqonometrik eyniliklər triqonometrik funksiyaların daxil olduğu bərabərliklərdir. Həndəsi olaraq isə bu eyniliklər bir və ya bir neçə bucağın müəyyən funksiyalarını ehtiva edən eyniliklərdir. Sinus və kosinus arasındakı əsas əlaqə Pifaqorun triqonometrik eyniliyi ilə verilir: sin 2 ⁡ θ + cos 2 ⁡ θ = 1 , {\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1,} burada sin 2 ⁡ θ {\displaystyle \sin ^{2}\theta } – ( sin ⁡ θ ) 2 {\displaystyle (\sin \theta )^{2}} , cos 2 ⁡ θ {\displaystyle \cos ^{2}\theta } – ( cos ⁡ θ ) 2 {\displaystyle (\cos \theta )^{2}} deməkdir. Bu bərabərlikdən sinus və kosinusu tapmaq mümkündür: sin ⁡ θ = ± 1 − cos 2 ⁡ θ , cos ⁡ θ = ± 1 − sin 2 ⁡ θ . {\displaystyle {\begin{aligned}\sin \theta &=\pm {\sqrt {1-\cos ^{2}\theta }},\\\cos \theta &=\pm {\sqrt {1-\sin ^{2}\theta }}.\end{aligned}}} Bərabərliyin tərəflərini ayrı-ayrılıqda sinusa və kosinusa və ya hər ikisinə böldükdə aşağıdakı eyniliklər alınır: 1 + cot 2 ⁡ θ = csc 2 ⁡ θ 1 + tan 2 ⁡ θ = sec 2 ⁡ θ sec 2 ⁡ θ + csc 2 ⁡ θ = sec 2 ⁡ θ csc 2 ⁡ θ {\displaystyle {\begin{aligned}&1+\cot ^{2}\theta =\csc ^{2}\theta \\&1+\tan ^{2}\theta =\sec ^{2}\theta \\&\sec ^{2}\theta +\csc ^{2}\theta =\sec ^{2}\theta \csc ^{2}\theta \end{aligned}}} Bu eyniliklərdən istifadə edərək hər hansı bir triqonometrik funksiyanı digəri ilə ifadə etmək mümkündür: Triqonometrik funksiyaların işarəsi bucağın rübündən asılıdır. Əgər − π < θ ≤ π {\displaystyle {-\pi }<\theta \leq \pi } və sgn işarə funksiyasını ifadə edərsə, sgn ⁡ ( sin ⁡ θ ) = sgn ⁡ ( csc ⁡ θ ) = { + 1 if 0 < θ < π − 1 if − π < θ < 0 0 if θ ∈ { 0 , π } sgn ⁡ ( cos ⁡ θ ) = sgn ⁡ ( sec ⁡ θ ) = { + 1 if − 1 2 π < θ < 1 2 π − 1 if − π < θ < − 1 2 π or 1 2 π < θ < π 0 if θ ∈ { − 1 2 π , 1 2 π } sgn ⁡ ( tan ⁡ θ ) = sgn ⁡ ( cot ⁡ θ ) = { + 1 if − π < θ < − 1 2 π or 0 < θ < 1 2 π − 1 if − 1 2 π < θ < 0 or 1 2 π < θ < π 0 if θ ∈ { − 1 2 π , 0 , 1 2 π , π } {\displaystyle {\begin{aligned}\operatorname {sgn}(\sin \theta )=\operatorname {sgn}(\csc \theta )&={\begin{cases}+1&{\text{if}}\ \ 0<\theta <\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <0\\0&{\text{if}}\ \ \theta \in \{0,\pi \}\end{cases}}\\[5mu]\operatorname {sgn}(\cos \theta )=\operatorname {sgn}(\sec \theta )&={\begin{cases}+1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },{\tfrac {1}{2}}\pi {\bigr \}}\end{cases}}\\[5mu]\operatorname {sgn}(\tan \theta )=\operatorname {sgn}(\cot \theta )&={\begin{cases}+1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ 0<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <0\ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },0,{\tfrac {1}{2}}\pi ,\pi {\bigr \}}\end{cases}}\end{aligned}}} sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β {\displaystyle {\begin{aligned}\sin(\alpha +\beta )&=\sin \alpha \cos \beta +\cos \alpha \sin \beta \\\sin(\alpha -\beta )&=\sin \alpha \cos \beta -\cos \alpha \sin \beta \\\cos(\alpha +\beta )&=\cos \alpha \cos \beta -\sin \alpha \sin \beta \\\cos(\alpha -\beta )&=\cos \alpha \cos \beta +\sin \alpha \sin \beta \end{aligned}}} sin ⁡ ( α − β ) {\displaystyle \sin(\alpha -\beta )} və cos ⁡ ( α − β ) {\displaystyle \cos(\alpha -\beta )} bucaq fərqlərini " β {\displaystyle \beta } " -nı " − β {\displaystyle -\beta } " ilə əvəz etməklə və sin ⁡ ( − β ) = − sin ⁡ ( β ) {\displaystyle \sin(-\beta )=-\sin(\beta )} və cos ⁡ ( − β ) = cos ⁡ ( β ) {\displaystyle \cos(-\beta )=\cos(\beta )} faktına əsaslanaraq da tapmaq olar.

"formulları" sözü ilə başlayan sözlər

Oxşar sözlər

#formulları nədir? #formulları sözünün mənası #formulları nə deməkdir? #formulları sözünün izahı #formulları sözünün yazılışı #formulları necə yazılır? #formulları sözünün düzgün yazılışı #formulları leksik mənası #formulları sözünün sinonimi #formulları sözünün yaxın mənalı sözlər #formulları sözünün əks mənası #formulları sözünün etimologiyası #formulları sözünün orfoqrafiyası #formulları rusca #formulları inglisça #formulları fransızca #formulları sözünün istifadəsi #sözlük