tənliyi sözü azərbaycan dilində

tənliyi

Yazılış

  • tənliyi • 76.4706%
  • Tənliyi • 11.7647%
  • TƏNLİYİ • 11.7647%

* Sözün müxtəlif mətnlərdə yazılışı.

Mündəricat

OBASTAN VİKİ
Davamlılıq tənliyi
Davamlılıq tənliyi, axdığı boru içərisindəki duruların (mayelərin) axını, onu qoruyub saxlayan bir tənlikdir. Kütlə, enerji, impuls, elektrik yükü və digər təbii miqdarlar lazımi şəraitdə saxlanıldığı üçün müxtəlif fiziki hadisələri davamlılıq tənliyi ilə təsvir etmək olar. == Sıxılmış durular için davamlılıq tənliyi == ρ 1 ⋅ V 1 ⋅ A 1 = ρ 2 ⋅ V 2 ⋅ A 2 {\displaystyle \rho _{1}\cdot \mathbf {V} _{1}\cdot \mathbf {A} _{1}=\rho _{2}\cdot \mathbf {V} _{2}\cdot \mathbf {A} _{2}} burada; ρ {\displaystyle \rho \,} : Sıxlıq , V {\displaystyle \mathbf {V} } Durunun sürəti , A {\displaystyle \mathbf {A} } : Məhdud ( Enkesit ) vektorial sahədir . == Sıxılmayan durular için davamlılıq tənliyi == V 1 ⋅ A 1 = V 2 ⋅ A 2 {\displaystyle \mathbf {V} _{1}\cdot \mathbf {A} _{1}=\mathbf {V} _{2}\cdot \mathbf {A} _{2}} burada; V {\displaystyle \mathbf {V} } Durunun sürəti , A {\displaystyle \mathbf {A} } : Məhdud ( Enkesit ) vektorial sahədir .
Diofant tənliyi
Diofant tənliyi — adını e.ə III əsrdə yaşadığı təxmin edilən qədim yunan riyaziyyatçısı Diofantdan alan dəyişənləri və əmsalları tam ədəd olan tənlik. Diofant "Hesab" adlı yalnız 6 cildi günümüzə gəlib-çatan əsərində 130 tənliyi və onların həllini qeyd etmişdir. == Xətti Diofant tənlikləri == Sadə xətti tənlikdə nümunələr aşağıdakı kimi verilə bilər; Nümunə 1.1 x + y = 1 {\displaystyle x+y=1} Bu bərabərlikdə hər bir x qiyməti üçün tək bir y həlli var. ( y = 1 − x {\displaystyle y=1-x} ). Bu bərabərliyin həll çoxluğu; (X, 1 − X) şəklindədir hər X ∈ Z üçünNümunə 1.2 x + 2 y = 1 {\displaystyle x+2y=1} Bu dəfə x-in hər hansı bir tam ədəd ola bilməyəcəyi, lakin sadəcə tək ədəd ola biləcəyi görülür ( x = 1 − 2 y {\displaystyle x=1-2y} ). Bu bərabərliyin həll çoxluğu; (1-2y, y) şəklindədir hər y ∈ Z üçünNümunə 1.3 3 x + 6 y = 1 {\displaystyle 3x+6y=1} Bu bərabərliyin həlli boş çoxluqdur. Hər x {\displaystyle x} və y {\displaystyle y} tam ədəd seçimi üçün bu tənliyin sol tərəfi həmişə 3-cü qüvvət olduğu halda sağ tərəfi heç vaxt 3-cü qüvvətdən ola bilməz. === Ümumi xətti Diofant tənliyi === a x + b y = c {\displaystyle ax+by=c} şəklindədir. Burada a, b və c tam əmsallar x {\displaystyle x} və y {\displaystyle y} tam ədəd dəyişənləridir. == Digər nümunələr == === Pifaqor teoremi === Ümumi bir nümunə Pifaqor tənliyidir (Bax: Pifaqor teoremi) Nümunə 2.1.1 x 2 + y 2 = z 2 {\displaystyle x^{2}+y^{2}=z^{2}\,} Burada x , y , z {\displaystyle x,y,z} tam ədədləri düzbucaqlı üçbucağın kənar tərəflərini təmsil etdiyi üçün Pifaqor üçlüyü olaraq da adlandırılır.
Diyofantus tənliyi
Diofant tənliyi — adını e.ə III əsrdə yaşadığı təxmin edilən qədim yunan riyaziyyatçısı Diofantdan alan dəyişənləri və əmsalları tam ədəd olan tənlik. Diofant "Hesab" adlı yalnız 6 cildi günümüzə gəlib-çatan əsərində 130 tənliyi və onların həllini qeyd etmişdir. == Xətti Diofant tənlikləri == Sadə xətti tənlikdə nümunələr aşağıdakı kimi verilə bilər; Nümunə 1.1 x + y = 1 {\displaystyle x+y=1} Bu bərabərlikdə hər bir x qiyməti üçün tək bir y həlli var. ( y = 1 − x {\displaystyle y=1-x} ). Bu bərabərliyin həll çoxluğu; (X, 1 − X) şəklindədir hər X ∈ Z üçünNümunə 1.2 x + 2 y = 1 {\displaystyle x+2y=1} Bu dəfə x-in hər hansı bir tam ədəd ola bilməyəcəyi, lakin sadəcə tək ədəd ola biləcəyi görülür ( x = 1 − 2 y {\displaystyle x=1-2y} ). Bu bərabərliyin həll çoxluğu; (1-2y, y) şəklindədir hər y ∈ Z üçünNümunə 1.3 3 x + 6 y = 1 {\displaystyle 3x+6y=1} Bu bərabərliyin həlli boş çoxluqdur. Hər x {\displaystyle x} və y {\displaystyle y} tam ədəd seçimi üçün bu tənliyin sol tərəfi həmişə 3-cü qüvvət olduğu halda sağ tərəfi heç vaxt 3-cü qüvvətdən ola bilməz. === Ümumi xətti Diofant tənliyi === a x + b y = c {\displaystyle ax+by=c} şəklindədir. Burada a, b və c tam əmsallar x {\displaystyle x} və y {\displaystyle y} tam ədəd dəyişənləridir. == Digər nümunələr == === Pifaqor teoremi === Ümumi bir nümunə Pifaqor tənliyidir (Bax: Pifaqor teoremi) Nümunə 2.1.1 x 2 + y 2 = z 2 {\displaystyle x^{2}+y^{2}=z^{2}\,} Burada x , y , z {\displaystyle x,y,z} tam ədədləri düzbucaqlı üçbucağın kənar tərəflərini təmsil etdiyi üçün Pifaqor üçlüyü olaraq da adlandırılır.
Dreyk tənliyi
Dreyk tənliyi — qalaktikada bizimlə əlaqəyə girmək ehtimalı olan sivilizasiyaların sayını hesablamağa imkan verən riyazi formul. Formul aşağıdakı kimidir: N = R ⋅ f p ⋅ n e ⋅ f l ⋅ f i ⋅ f c ⋅ L {\displaystyle N=R\cdot f_{p}\cdot n_{e}\cdot f_{l}\cdot f_{i}\cdot f_{c}\cdot L} burada, N {\displaystyle ~N} — əlaqəyə girməyə hazır olan sivilizasiyaların sayı; R {\displaystyle ~R} — il ərzində bizim qalaktikada yaranan ulduzların sayı; f p {\displaystyle ~f_{p}} — planetləri olan ulduzların xüsusi çəkisi; n e {\displaystyle ~n_{e}} — sivilizasiyanın yaranması üçün müvafiq şəraitə malik olan planetlərin və peyklərin sayı; f l {\displaystyle ~f_{l}} — müvafiq şəraitə malik olan planetdə həyatın yaranması ehtimalı; f i {\displaystyle ~f_{i}} — həyat olan planetdə şüurlu varlıqların yaranma ehtimalı; f c {\displaystyle ~f_{c}} — əlaqəyə hazır olan və əlaqəyə girmək istəyən şüurlu sakinlərə malik planetlərlə, şüurlu sakinləri olan planetlərin sayına nisbəti; L {\displaystyle ~L} — bu sivilizasiyaların ömür müddəti.Formul Kaliforniyanın Santa-Kruz Universitetinin astronomiya və astrofizika professoru Frenk Donald Dreyk tərəfindən 1960-cı ildə təklif olunmuşdur. Onun 1961-ci ildə ehtimal olunan rəqəmlər əsasında apardığı hesablama aşağıdakı kimi olmuşdur. R = 10/il (ildə 10 ulduz yaranır) fp = 0.5 (ulduzların yarısının planetləri var) ne = 2 (sitemdə orta hesabla 2 planet həyat üçün yararlıdır) fl = 1 (əgər həyatın yaranma ehtimalı varsa, o mütləq yaranır) fi = 0.01 (həyatın şüurlu formayadək inkişaf etməsi ehtimalı – 1 %) fc = 0.01 (sivilizasiyaların 1 %-i əlaqə yaratmaq imkanına malik olacaq və əlaqə qurmaq istəyəcək) L = 10 000 il (texniki cəhətdən inkişaf etmiş sivilizasiya 10000 il mövcud olur)Bu təxmini hesablamaya əsasən N = 10 × 0,5 × 2 × 1 × 0,01 × 0,01 × 10000 = 10. Tənlikdəki göstəricilərdən yalnız R {\displaystyle ~R} və f p {\displaystyle ~f_{p}} astronomiyanın indiki inkişaf səviyyəsində müəyyən qədər dəqiq müəyyənləşdirilə bilər. Digər göstəricilərin müəyyənləşdirilməsi mümkün olmadığından Dreyk tənliyi kəskin tənqidlərlə qarşılaşmışdır.
Koşi tənliyi
Koşi ötürmə tənliyi Optikada müəyyən bir şəffaf material üçün işığın sınma indeksi və dalğa uzunluğu arasında empirik əlaqə . Adını 1837-ci ildə təyin edən riyaziyyatçı Oqüsten Koşinin şərəfinə almışdır. == Tənlik == Koşi tənliyinin ən ümumi forması n ( λ ) = A + B λ 2 + C λ 4 + ⋯ , {\displaystyle n(\lambda )=A+{\frac {B}{\lambda ^{2}}}+{\frac {C}{\lambda ^{4}}}+\cdots ,} burada n sınma əmsalıdır, λ dalğa uzunluğu, A, B, C və s., tənliyi məlum dalğa uzunluqlarında ölçülmüş sındırma göstəricilərinə uyğunlaşdırmaqla material üçün müəyyən edilə bilən əmsallardır . Əmsallar adətən mikrometrlərdə vakuum dalğa uzunluğu (materialın daxilində olan λ/n kimi deyil) kimi λ üçün göstərilir. Adətən, tənliyin ilk iki həddindən istifadə etmək kifayətdir: n ( λ ) = A + B λ 2 , {\displaystyle n(\lambda )=A+{\frac {B}{\lambda ^{2}}},} burada A və B əmsalları tənliyin bu forması üçün xüsusi olaraq təyin edilir. Ümumi optik materiallar üçün əmsallar cədvəli aşağıda göstərilmişdir: işıq-maddə qarşılıqlı əlaqəni əsaslandıran Koşinin bu tənliyi sonradan yanlış olduğu məlum oldu. Xüsusilə, tənlik yalnız görünən dalğa uzunluğu bölgəsində normal dispersiya bölgələri üçün keçərlidir. İnfraqırmızı dalğalarda tənlik qeyri-dəqiq olur və anomal dispersiya bölgələrini təmsil edə bilmir. Buna baxmayaraq, onun riyazi sadəliyi onu bəzi tətbiqlərdə faydalı edir. Zelmeyer tənliyi anomal dispersiv bölgələri əhatə edən və ultrabənövşəyi, görünən(400-700 nm dalğa uzunluqlu şüalar) və infraqırmızı spektrdə materialın sındırma indeksini daha dəqiq modelləşdirən Koşinin çalışmasının genişləndirilmiş formasıdır.
Laplas tənliyi
Laplas tənliyi riyaziyyatda və fizikada ikitərtibli xüsusi törəməli diferensial tənlikdir. Xüsusiyyətləri ilk dəfə Pyer Simon Laplas tərəfindən tətqiq edildiyinə görə onun adını daşıyır. Tənliyin yazılışı aşağıdaki kimidir: ∇ 2 f = 0 və ya Δ f = 0 , {\displaystyle \nabla ^{2}\!f=0\qquad {\mbox{və ya}}\qquad \Delta f=0,} Burada Δ = ∇ ⋅ ∇ = ∇ 2 {\displaystyle \Delta =\nabla \cdot \nabla =\nabla ^{2}} Laplas operatoru, ∇ ⋅ {\displaystyle \nabla \cdot } divergensiya operatoru, ∇ {\displaystyle \nabla } qradiyent operatoru və f ( x , y , z ) {\displaystyle f(x,y,z)} isə iki dəfə diferensiallana bilən həqiqi qiymətli funksiyadır. Belə ki, Laplas operatoru skalyar bir funksiyanı başqa skalyar funksiyaya inkas etdirir. Sağ tərəfdə h ( x , y , z ) {\displaystyle h(x,y,z)} funksiyası təyin olunarsa, onda Laplas tənliyi aşağıdaki kimi verilir: Δ f = h . {\displaystyle \Delta f=h.} Buna Puasson tənliyi, Laplas tənliyinin ümumiləşdirilməsi deyilir. Laplas və Poisson tənlikləri eliptik xüsusi törəməli diferensial tənliklərin ən sadə nümunələridir. Laplas tənliyi, həmçiin Helmholtz tənliyinin xüsusi bir haldır. Laplas tənliyinin həllərinin ümumi nəzəriyyəsi potensial nəzəriyyə olaraq bilinir. Laplas tənliyinin həlli fizikanın bir çox sahələrində, xüsusən elektrostatikada, qravitasiya və maye dinamikasında mühüm əhəmiyyət daşıyan harmonik funksiyalardır.
Rikkati tənliyi
y ′ + a ( x ) y + b ( x ) y 2 + c ( x ) = 0 {\displaystyle y^{\prime }+a(x)y+b(x)y^{2}+c(x)=0} ( ∗ ) {\displaystyle (*)} şəklində tənliyə Rikkati tənliyi deyilir. Rikkati tənliyi b ( x ) = 0 {\displaystyle b(x)=0} olduqda xətti, c ( x ) = 0 {\displaystyle c(x)=0} olduqda isə Bernulli tənliyinə çevrilir. Rikkati tənliyinin hər hansı y 1 ( x ) {\displaystyle y_{1}(x)} xüsusi həlli məlum olduqda y ( x ) = y 1 ( x ) + z ( x ) {\displaystyle y(x)=y_{1}(x)+z(x)} əvəzləməsi vasitəsilə Bernulli tənliyinə gətirlir. Ümumi halda, Rikkati tənliyi kvadraturaya gətirilə bilmir, yəni həll etmək olmur. == Tarixi == Xüsusi halda: b d x d t = x 2 + a t α , ( ∗ ∗ ) {\displaystyle b{\frac {dx}{dt}}=x^{2}+at^{\alpha },\quad (**)} haradakı α , a , b ≠ 0 {\displaystyle \alpha ,\,a,\,b\neq 0} —sabiti, ilk dəfə italyan riyaziyyatçısı tədqiq etmişdir Yakopo Françesko Rikkati və ailələrini Bernulli . α = 4 n / ( 1 − 2 n ) , n ∈ N , {\displaystyle \alpha ={4n}/{(1-2n)},\ n\in \mathbb {N} ,} или α = − 2 {\displaystyle \alpha =-2} Jozef Liuvill (1841)isbat etmişdir. ( ∗ ) {\displaystyle (*)} şəkildə ümumi Rikkati tənliyi , ( ∗ ∗ ) {\displaystyle (**)} — isə xüsusi Rikkati tənliyi adlanır. == Xassələri == y ′ + m ( x ) ( A y + B y 2 + C ) = 0 {\displaystyle y^{\prime }+m(x)(Ay+By^{2}+C)=0} olduqda dəyişənlərinə ayrılan, y ′ + A y x + B ( y x ) 2 + C = 0 {\displaystyle y^{\prime }+A{\frac {y}{x}}+B\left({\frac {y}{x}}\right)^{2}+C=0} olduqda bircins, y ′ + A y x + B ( y ) 2 + C x 2 = 0 {\displaystyle y^{\prime }+A{\frac {y}{x}}+B(y)^{2}+{\frac {C}{x^{2}}}=0} olduqda ümumiləşmiş bircns tənliyə çevrilir. == Nümunə. == y ′ + 2 y e x − y 2 = e 2 x + e x {\displaystyle y^{\prime }+2ye^{x}-y^{2}=e^{2x}+e^{x}} Rikkati tənliyini həll edin.
Vaxt tənliyi
Vaxt tənliyi eyni an üçün verilmiş coğrafi meridianda orta və həqiqi Günəş vaxtlarının fərqidir. η = T m − T ⊙ = t m − t ⊙ {\displaystyle \eta =T_{m}-T_{\odot }=t_{m}-t_{\odot }} Vaxt tənliyini əslində vaxt düzəlişi adlandırmaq daha doğru olardı, lakin o tarixi olaraq astronomiyaya vaxt tənliyi kimi daxil olmuşdur.Fərqli iki Günəş vaxtı dedikdə Günəşin günlük hərəkətini birbaşa izləyən Həqiqi Günəş vaxtı və 24 saat arayla nəzəri olaraq hesablanan Orta Günəş vaxtı nəzərdə tutulur. Aydındır ki, Günəş vaxtı, Günəşin cari mövqeyinin Günəş saatı vasitəsilə (məhdud dəqiqliklə) ölçülməsi ilə əldə edilə bilər. Eyni yer üçün Orta Günəş Vaxtı, sabit bir saat dəsti ilə göstərilən vaxt olacaq, belə ki, il ərzində görünən Günəş vaxtındakı fərqlər sıfıra bərabər olacaqdır.Vaxtın tənliyi, analemmanın şərq və ya qərb hissəsidir, Günəşin açılı ofsetini Yerdən göründüyü kimi, göy səthindəki orta mövqedən təmsil edən bir əyridir. Astronomik observatoriyalar tərəfindən tərtib edilən ilin hər günü üçün vaxt dəyərlərinin bərabərliyi almanak və efemeridlərdə geniş yayılmışdır. == Konsepsiya == Bir il ərzində vaxt tənliyi qrafada göstərildiyi kimi dəyişir; bir ildən sonrakı dövrdə onun dəyişməsi azdır. Görünən vaxtı və günəş saatı, 16 min 33 s (3 noyabr) qədər, ya da 14 min 6 s (təxminən 12 fevral) qədər arxa (sürətli) ola bilər. Vaxtın tənliyi 15 aprel, 13 iyun, 1 sentyabr və 25 dekabr yaxınlarında sıfırdır. Yerin orbitində və rotasiyasında çox yavaş dəyişikliklərə baxmayaraq, bu hadisələr hər tropik il eyni zamanda təkrarlanır. Ancaq bir il içərisində qeyri-tam sayda gün sayəsində bu tarixlər ildən-günə dəyişə bilər Vaxtın tənlikinin qrafası bir il müddətinə və bir yarım il müddətinə malik olan iki sinüs əyri məbləğinə yaxınlaşıb.
Vəziyyət tənliyi
Vəziyyət tənliyi - termodinamikanın makroskopik sistemlərini (temperatur, təzyiq, həcm, kimyəvi potensial və s.) bir-biri ilə əlaqələndirən tənlikdir. == Tənliklər == === Termodinamikanın vəziyyət tənliyi === f ( P , V , T ) = 0. {\displaystyle f(P,\;V,\;T)=0.} === Kalorik vəziyyət tənliyi === U = U ( T , V ) , {\displaystyle U=U(T,V),} U = U ( T , P ) , {\displaystyle U=U(T,P),} U = U ( V , P ) . {\displaystyle U=U(V,P).} === Kanonik vəziyyət tənliyi === U = U ( S , V ) {\displaystyle U=U(S,\;V)} (daxili enerji üçün kanonik vəziyyət tənliyidir), H = H ( S , P ) {\displaystyle H=H(S,\;P)} (entalpiya üçün kanonik vəziyyət tənliyidir), F = F ( T , V ) {\displaystyle F=F(T,\;V)} (Helmhots enerjisi üçün kanonik vəziyyət tənliyidir), G = G ( T , P ) {\displaystyle G=G(T,\;P)} (Qibbs potensialı üçün kanonik vəziyyət tənliyidir). == Ədəbiyyat == Perrot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. ISBN 0-19-856552-6. Van der Waals, J. D. (1873). On the Continuity of the Gaseous and Liquid States (doctoral dissertation).
Zelmeyer tənliyi
Zelmeyer tənliyi müəyyən bir şəffaf mühit üçün sınma indeksi və dalğa uzunluğu arasında empirik əlaqədir . Tənlik işığın mühitdə dispersiyasını təyin etmək üçün istifadə olunur. İlk dəfə 1872-ci ildə Volfqanq Zelmeyer tərəfindən təklif edildi və Augustin Cauchy -nin dispersiyanın modelləşdirilməsi üçün kəşf etdiyi Koşi tənliyinin ümumiləşdirilmiş forması idi. == Tənlik == Orijinal və ən ümumi formada Zelmeyer tənliyi aşağıdakı kimi verilir n 2 ( λ ) = 1 + ∑ i B i λ 2 λ 2 − C i {\displaystyle n^{2}(\lambda )=1+\sum _{i}{\frac {B_{i}\lambda ^{2}}{\lambda ^{2}-C_{i}}}} ,burada n sınma əmsalı, λ dalğa uzunluğu, Bi və Ci isə eksperimental olaraq müəyyən edilmiş Zelmeyer əmsallarıdır . Bu əmsallar adətən mikrometrlərdə λ üçün göstərilir. Qeyd edək ki, bu λ vakuum dalğa uzunluğudur, yəni materialın daxilində olan λ/n formasında deyil. Tənliyin fərqli forması bəzən müəyyən növ materiallar üçün istifadə olunur, məsələn, kristallar. Cəmin hər həddi, C i {\displaystyle {\sqrt {C_{i}}}} dalğa uzunluğunda Bi -in absorbsiya rezonansını təmsil edir. Məsələn, BK7 şüşəsi üçün aşağıdakı əmsallar ultrabənövşəyi şüada iki, orta infraqırmızı bölgədə isə bir udma rezonansına uyğun gəlir. Hər bir absorbsiya zirvəsinin yaxınında tənlik n2 = ±∞ qeyri-fiziki qiymətləri verir və bu dalğa uzunluğu bölgələrində Helmholtzun tənliyi kimi daha dəqiq dispersiya modelindən istifadə edilməlidir.
Şredinger tənliyi
Şredinger tənliyi — kvant-mexaniki sistemləri təsvir edən xüsusi törəməli xətti diferensial tənlik; kvant mexanikasının fundamental tənliyi.:1–2 Bu tənlik kvant mexanikasının inkişafında başlıca dönüş nöqtəsi yaratmışdır. Tənlik Ervin Şredingerin adını daşıyır. Şredinger bu tənliyi 1925-ci ildə irəli sürmüş, 1926-cı ildə nəşr etdirmiş, 1933-cü ildə isə bu işinə görə Fizika üzrə Nobel Mükafatı almışdır.Konseptual olaraq Şredinger tənliyi klassik mexanikadakı Nyutonun ikinci qanununun kvant qarşılığıdır. Bir sıra məlum başlanğıc şərtləri nəzərə aldıqda, Nyutonun ikinci qanunu müəyyən bir fiziki sistemin zamanla hansı yolu keçəcəyinə dair riyazi proqnoz verir. Şredinger tənliyi dalğa funksiyasının zamana görə evolyusiyasını, təcrid olunmuş fiziki sistemin kvant-mexaniki xarakteristikasını ifadə edir. Tənlik zaman-evolyusiya operatorunun unitarlığı şərtindən çıxarıla bilər və buna görə də kvant Hamiltonianı olan özü-özünə qoşma operatorun üstlü qiymətiylə əldə olunmalıdır. Şredinger tənliyi kvant-mexaniki sistemləri öyrənmək və proqnozlar vermək üçün yeganə yol deyil. Kvant mexanikasının digər formulyasiyalarına Verner Heyzenberq tərəfindən irəli sürülən matris mexanikası və əsası Riçard Feynman tərəfindən hazırlanmış trayektoriya inteqral formulyasiyası daxildir. Pol Dirak matris mexanikasını və Şredinger tənliyini vahid bir formada birləşdirmişdir. Bu yanaşmaları nəzərə aldıqda, Şredinger tənliyinə əsaslanan mexanikaya bəzən "dalğa mexanikası" da deyilir.
Şrödinger tənliyi
Şredinger tənliyi — kvant-mexaniki sistemləri təsvir edən xüsusi törəməli xətti diferensial tənlik; kvant mexanikasının fundamental tənliyi.:1–2 Bu tənlik kvant mexanikasının inkişafında başlıca dönüş nöqtəsi yaratmışdır. Tənlik Ervin Şredingerin adını daşıyır. Şredinger bu tənliyi 1925-ci ildə irəli sürmüş, 1926-cı ildə nəşr etdirmiş, 1933-cü ildə isə bu işinə görə Fizika üzrə Nobel Mükafatı almışdır.Konseptual olaraq Şredinger tənliyi klassik mexanikadakı Nyutonun ikinci qanununun kvant qarşılığıdır. Bir sıra məlum başlanğıc şərtləri nəzərə aldıqda, Nyutonun ikinci qanunu müəyyən bir fiziki sistemin zamanla hansı yolu keçəcəyinə dair riyazi proqnoz verir. Şredinger tənliyi dalğa funksiyasının zamana görə evolyusiyasını, təcrid olunmuş fiziki sistemin kvant-mexaniki xarakteristikasını ifadə edir. Tənlik zaman-evolyusiya operatorunun unitarlığı şərtindən çıxarıla bilər və buna görə də kvant Hamiltonianı olan özü-özünə qoşma operatorun üstlü qiymətiylə əldə olunmalıdır. Şredinger tənliyi kvant-mexaniki sistemləri öyrənmək və proqnozlar vermək üçün yeganə yol deyil. Kvant mexanikasının digər formulyasiyalarına Verner Heyzenberq tərəfindən irəli sürülən matris mexanikası və əsası Riçard Feynman tərəfindən hazırlanmış trayektoriya inteqral formulyasiyası daxildir. Pol Dirak matris mexanikasını və Şredinger tənliyini vahid bir formada birləşdirmişdir. Bu yanaşmaları nəzərə aldıqda, Şredinger tənliyinə əsaslanan mexanikaya bəzən "dalğa mexanikası" da deyilir.
Bernoulli diferensial tənliyi
Riyaziyyatda, y ′ + P ( x ) y = Q ( x ) y n {\displaystyle y'+P(x)y=Q(x)y^{n}} formasında yazılan adi diferensial tənliyə Bernoulli diferensial tənliyi deyilir. Burada n {\displaystyle n} , 0 və ya 1-dən başqa hər hansı bir real sayıdır. 1695-ci ildə bunu müzakirə edən Yakob Bernulli adını daşıyır. Bernoulli tənlikləri özəl tənliklərdir, çünki məlum dəqiq həlləri olan xətti olmayan diferensial tənliklərdir. Bernoulli tənliyinin məşhur bir özəl hali logistik differensial tənliyidir . == Xətti diferensial tənliyə çevrilmə == n = 0 {\displaystyle n=0} olduğu hal üçün diferensial tənlik xəttidir. n = 1 {\displaystyle n=1} olarsa ayrıla bilər haldadır. Bu hallarda, bu formaların tənliklərini həll etmək üçün standart üsullar tətbiq edilə bilər. n ≠ 0 {\displaystyle n\neq 0} və n ≠ 1 {\displaystyle n\neq 1} olduqda u = y 1 − n {\displaystyle u=y^{1-n}} yerləşdirilirsə hər hansı bir Bernoulli tənliyini xətti diferensial tənliyə endirilir. Məsələn, n = 2 {\displaystyle n=2} də, u = y − 1 {\displaystyle u=y^{-1}} yerləşdirilirsə, d y d x + 1 x y = x y 2 {\displaystyle {\frac {dy}{dx}}+{\frac {1}{x}}y=xy^{2}} diferensial tənliyindən d u d x − 1 x u = − x {\displaystyle {\frac {du}{dx}}-{\frac {1}{x}}u=-x} xətti diferensial tənliyi d əldə edilir.
Elektrik neytrallıq tənliyi
Xarici təsir olmadıqda yarımkeçiricilərdə əsas yük daşıyıcıların generasiyası valent zonasından keçirici və ya akseptor səviyyələrinə və yaxud donor səviyyəsindən keçirici zonaya keçidlərlə elektronların istilik həyəcanlanması hesabına baş verir. Bu zaman keçirici zonasında sərbəst elektronlar, valent zonasında isə sərbəst deşiklər əmələ qəlir. İki tərs proses - yük daşıyıcıların generasiyası və rekombinasiyası nəticəsində, yarımkeçirici kristalın tərkibində elektronların - n0 və deşiklərin -р0 konsentrasiyası tarazlıq halına gələrək istilik tarazlıq halını yaratmış olurlar. Sərbəst yük daşıyıcıların generasiyası hesabına yarımkeçiricilərdə hər zaman əks qiymətə malik yük daşıyıcılar əmələ gəlir. Beləliklə yarımkeçiri kristallarda yüklənmiş hissəciklərin cəm yükü sıfıra bərabər olur, bu isə yarımkeçiricinin elektrik olaraq tam neytrallığı deməkdir. Elektrik neytrallıq şərti bu cür ifadə olunur: n 0 + N A − = p 0 + N D + {\displaystyle n_{0}+N_{A}^{-}=p_{0}+N_{D}^{+}} burda n0 və р0 – elektronların keçirici zonasında və deşiklərin valent zonasında tarazlıq konsentrasiyasıdır; N A − {\displaystyle N_{A}^{-}} və N D + {\displaystyle N_{D}^{+}} - akseptor və donorların bir qat ionlaşmış atomların konsentrasiyasını ifade edir.
Koşi-Eyler tənliyi
Koşi-Eyler tənliyi və ya Eyler-Koşi tənliyi ya da qısaca, Eyler tənliyi xətti, bircins, dəyişən əmsallı adi differensial tənlikdir. == Tənlik == y(n)(x) y(x) funksiyasının n-ci dərəcədən törəməsi olsun, onda Koşi- Eyler tənliyi bu şəkildə verilir: a n x n y ( n ) ( x ) + a n − 1 x n − 1 y ( n − 1 ) ( x ) + ⋯ + a 0 y ( x ) = 0. {\displaystyle a_{n}x^{n}y^{(n)}(x)+a_{n-1}x^{n-1}y^{(n-1)}(x)+\cdots +a_{0}y(x)=0.} x = e u {\displaystyle x=e^{u}} əvəzləməsi ilə tənlik sabit əmsallı xətti diferensial tənliyə gətirilir. Alternativ olaraq tənliyin aşkar həlli y = x m {\displaystyle y=x^{m}} əvəzləməsi ilə tapılır. === İkitərtibli Koşi-Eyler tənliyinin aşkar həlli === Ən çox yayılmış Koşi-Eyler tənliyi Laplas tənliyinin qütb koordinatlarında həlli kimi, bir sıra fizika və mühəndislik tətbiqlərində görünən ikitərtibli tənlikdir. İkitərtibli Koşi-Eyler tənliyi aşağıdaki kimidir: x 2 d 2 y d x 2 + a x d y d x + b y = 0. {\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+ax{\frac {dy}{dx}}+by=0.\,} Aşkar həlli y = x m {\displaystyle y=x^{m}\,} şəklində tapılır. Differensiallamaqla alınır: d y d x = m x m − 1 {\displaystyle {\frac {dy}{dx}}=mx^{m-1}\,} və d 2 y d x 2 = m ( m − 1 ) x m − 2 . {\displaystyle {\frac {d^{2}y}{dx^{2}}}=m(m-1)x^{m-2}.\,} Alınan ifadələri əsas tənlikdə yerinə yazmaqla alınır: x 2 ( m ( m − 1 ) x m − 2 ) + a x ( m x m − 1 ) + b ( x m ) = 0 {\displaystyle x^{2}(m(m-1)x^{m-2})+ax(mx^{m-1})+b(x^{m})=0\,} Tənlik aşağıdaki hala gətirilir: m 2 + ( a − 1 ) m + b = 0. {\displaystyle m^{2}+(a-1)m+b=0.\,} Alınan tənlik m -ə nəzərən həll edilir.
Tolman-Openhaymer-Volkov tənliyi
Tolman-Openhaymer-Volkov tənliyi astronomiyada kütləsi və radiusu bəlli olan ulduzun mərkəzindən uzaqlaşdıqca daxili təzyiqin necə dəyişdiyini göstərən differensial tənlikdir.
İdeal qazın hal tənliyi
İdeal qazın hal tənliyi - sadəcə, olaraq ideal qazın halını təyin edən tənliyə deyilir. Bəzən bu tənliyə Klapeyron və ya Mendeleyev-Klapeyron tənliyi deyilir.

Tezlik illər üzrə

Sözün tezliyi - sözün mətnlərdə hansı tezliklə rast gəlinmə göstəricisidir. Bu rəgəm 1 000 000 söz arasında sözün neçə dəfə meydana gəlməsini göstərir.

Ümumi • 0.04 dəfə / 1 mln.
2003 •••••••••••• 0.39
2004 •••••••••••••••••••• 0.67
2012 ••• 0.09

"tənliyi" sözü ilə başlayan sözlər

Oxşar sözlər

#tənliyi nədir? #tənliyi sözünün mənası #tənliyi nə deməkdir? #tənliyi sözünün izahı #tənliyi sözünün yazılışı #tənliyi necə yazılır? #tənliyi sözünün düzgün yazılışı #tənliyi leksik mənası #tənliyi sözünün sinonimi #tənliyi sözünün yaxın mənalı sözlər #tənliyi sözünün əks mənası #tənliyi sözünün etimologiyası #tənliyi sözünün orfoqrafiyası #tənliyi rusca #tənliyi inglisça #tənliyi fransızca #tənliyi sözünün istifadəsi #sözlük