beta-spektroskopiya sözü azərbaycan dilində

beta-spektroskopiya

* azərbaycan dilinin orfoqrafiya lüğətində mövcuddur

Yazılış

  • beta-spektroskopiya • 100.0000%

* Sözün müxtəlif mətnlərdə yazılışı.

Mündəricat

OBASTAN VİKİ
Spektroskopiya
Spektroskopiya maddə ilə elektromaqnit şüalanmasının (elektron spektroskopiya, atom spektroskopiyası və s.) qarşılıqlı təsirinin öyrənilməsidir. Tarixən spektroskopiya görünən işığın dalğa uzunluğuna görə bir prizmadan yayılmasının öyrənilməsi nəticəsində yaranmışdır. Daha sonra, şüalanma enerjisi ilə onun dalğa uzunluğu və ya tezliyi, elektromaqnit spektri də daxil olmaqla hər hansı bir qarşılıqlı təsirinin öyrənilməsi ilə bu anlayış daha geniş yayıldı, həmçinin maddə dalğaları və akustik dalğalar da şüalanma enerjisinin forması hesab oluna bilər. Son dövrlərdə, böyük bir çətinliklə, hətta cazibə dalğaları da Lazer İnterferometri Qravitasiya-Dalğa Rəsədxanası (LIGO) və lazer İnterferometri kontekstində bir spektr ilə əlaqələndirildi. Spektroskopik məlumatlar yayılma spektri ilə (dalğa uzunluğu və ya tezliyi ilə) göstərilir. Spektroskopiya, ilk növbədə elektromaqnit spektrində, fizika, kimya və astronomiya sahələrində əsas tədqiqat vasitəsidir və maddənin tərkibini, fiziki quruluşunu və elektron quruluşunu atom səviyyəsində, molekulyar səviyyədə və makro səviyyədə daha çox araşdırmağa imkan verir. Əhəmiyyətli tətbiqlərdə toxuma analizi və tibbi görüntü sahələrində biotibbi spektroskopiyadan istifadə edilir. == Giriş == Spektroskopiya və spektroqrafiya, şüalanma intensivliyinin ölçülməsini dalğa uzunluğu ilə ifadə etmək üçün istifadə olunan terminlərdir və çox vaxt eksperimental spektroskopik metodları təsvir etmək üçün istifadə olunur. Spektral ölçmə cihazlarına spektrometr, spektrofotometr, spektroqraf və ya spektral analizator deyilir. Gündəlik rənglərin müşahidə edilməsi spektroskopiya ilə əlaqəlidir.
Beta
Beta (ß) — yunan əlifbasının ikinci hərfi, elektron şüalanmasının adı. Alfadan sonra, qammadan əvvəl gələn hərfdir.
Ultrabənövşəyi spektroskopiya
Ultrabənövşəyi (UF) (elektron) spektroskopiya — (UF-spektroskopiya, ing. near-infrared spectroscopy, NIR) optik spektroskopiyanın bölməsidir, üzvi və qeyri-üzvi birləşmələrin tədqiqatının ən yayılmış fiziki-kimyəvi metodlarından biridir. Ultrabənövşəyi spektroskopiya ultrabənövşəyi sahədə udulma, əks etmə spektrlərinin alınmasını, tədqiqatını və istifadə olunmasını özündə əks etdirir. Üzvi molekulların elektronlarını əsas vəziyyətdən həyəcanlandırılmış vəziyyətə keçirmək üçündür(bağlayıcı orbitaldan yumşaldıcı orbitala). Spektrin ultrabənövşəyi və görünən diapazonunun fotonlarının enerjisi kifayət qədər yüksəkdir (1,7–100 eV və ya təxminən 100-dən 730 nm-a qədər). == İş prinsipi == Bütün üzvi maddələr ultrabənövşəyi sahədə udulur. Bir qayda olaraq, "işçi" sahə intervalı 190–730 nm təşkil edir, əsasən 200-dən 380 nm-a qədər. Prizma və küvetin istehsalı üçün bu sahələrdə optik materiallar şəffafdır. 190 nm-dən (ultrabənövşəyi vakuum) az olan dalğa uzunluğu iş üçün əlverişsizdir, çünki bu sahədə havanın komponentləri olan oksigen və azotu udur. Bu səbəbdən iş üçün xüsusi vakuum kameraları istifadə olunur, bu isə laboratoriya təcrübəsini çətinləşdirir, ancaq tez-tez elə olur ki, qadağan edilmiş zonanın böyük ölçülü dielektriklərinin tədqiqatı əvəzolunmaz olur.
İnfraqırmızı spektroskopiya
İnfraqırmızı spektroskopiya — infraqırmızı şüaların təsiri ilə maddələrin tərkibindəki dəyişikliklərin təyin edilməsində istifadə olunan spektral analiz üsullarından biridir. Hələ 1882–1900-cü illərdə Edvard Festinq 52 birləşmənin "IQ" spektrini almış və müşahidə olunan udmanın bu molekullardakı funksional qruplarla əlaqəsini göstərmişdir. Bu üsulun daha da təkmilləşməsində Amerika fiziki Uilyam Kobelsin böyük əməyi oldu. Hələ 1903-cü ildə o, NaCl prizmasından istifadə edərək yüzlərlə üzvi və qeyri-üzvi maddələrin tam infraqırmızı spektrlərini almışdır. İQ spektroskopiyanın inkişafı İQ interferometrlərinin meydana gəlməsi ilə bağlı olmuşdur ki, bunlar da 70-ci illərdə təkmilləşərək kompüterləşmiş və Furye çevrici ilə təchiz olunmuş halda dünya bazarlarına çıxarılmışdır. Spektrlərdəki ehtizazi və fırlanma dalğa uzunluğu 1–50µ arasındadır. Mineralogiyada və kristalloqrafiyada infraqırmızı spektroskopiya mineral qarışıqlarının kəmiyyət analizi və tutuşdurulması; mineralın quruluşundakı H2O-nun təbiətini müəyyən etmək, onların əmələ gəlməsində bir kriteriya kimi quruluşun nizamlanma dərəcəsini araşdırmaq üçün və başqa hallarda istifadə olunur. Spektroskopiya maddə ilə elektromaqnit şüaların qarşılıqlı təsirini, maddənin struktur quruluşunu və onu təşkil edən atomların və molekulların öyrənilməsidir. Spektroskopiya elektromaqnit şüalanmanın – qamma şüaların, X-şüaların (rentgen şüaları), infraqırmızı şüaların, görünən və ultrabənövşəyi şüaların, mikrodalğanın və radio tezliklərin bütün sahəsini istifadə edir. İnfraqırmızı spektroskopiya spektroskopiyanın bir bölməsidir ki, infraqırmızı diapazonda üzvi və qeyri-üzvi birləşmələrin buraxılma, udulma və əksolunma spektrləri əldə edilir və araşdırılır.
Beta Oğlaq
Beta Capricorni, β Capricorni qısaldılmış formada Beta Cap, β Cap — Capricornus bürcündə bir çox ulduz sistemi və günəşdən 328 işıq ili təşkil edir. Sistem beş ulduzdan ibarətdir. Dürbün və ya kiçik bir teleskopla, Beta Capricorni ikili cüt halına gətirilə bilər. İki dənəsinin parlaqlığı Beta¹ Capricorni və ya Beta Capricorni A; dimmer, Beta² Capricorni və ya Beta Capricorni B. Hər ikisi də özləri çoxlu ulduzlardan ibarətdir. Beta¹ Capricorni üç komponentə malikdir; Beta Capricorni Aa (həmçinin Dabih [4] adı verilmiş) və ikili cüt, Beta Capricorni Ab (iki komponent Beta Capricorni Ab1 və Ab2 olaraq təyin olunur) adlı bir ulduzdur. Beta² Capricorni də Beta Capricorni Ba və Bb komponentləri olan ikili cütdür. Digər yaxın ulduzları John Herschel tərəfindən aşkar edilmişdir. Bəzən Beta Capricorni D və E kimi adlandırılanlar, sadəcə optik cütlərin və ya Beta Capricorni sisteminin bir hissəsinin olub-olmadığı aydın deyil. == Xüsusiyyətləri == Beta¹ Capricorni, dimensional Beta² Capricorni'nin +6.09-da görünən bir qüvvətə malik olduğu halda, iki hissənin daha parlaqdır. İki komponent göydə 3.5 arcminut ilə ayrılaraq, onları ən azı 21 min AU (0.34 işıq ili) ayırır.
Beta Tea
Beta Tea — çay brendi. 1994-cü ildə baş verən iqtisadi böhran səbəbilə istehsalçı şirkət brendi fərqli bazarlara soxmaq məcburiyyətində qalmışdır. Beləliklə, "Beta Tea" Türkiyəyə idxal çayı gətirən ilk firma olmuşdur. Brend 1990-cı illərin əvvəllərində postsovet məkanındakı dövlətlərin bazarlarına daxil olmuşdur. MDB ölkələrinə çay idxal edən ilk özəl müəssisə məhz "Beta" olmuşdur. Şirkət indiki dövrdə Azərbaycan, Qazaxıstan, Tacikistan, Özbəkistan, Qırğızıstan, Rusiya və İraq kimi ölkələrdə bir sıra brendləri ilə fəaliyyət göstərməkdədir.
Beta hissəcik
Beta hissəciklər- yüksək enerji və sürətli elektron və ya pozitronlardır. Beta hissəciklərin yayılma prosesi beta şüalanması adlanır. Enerji 0,5 MeV olan Beta hissəcikləri havada təxminən bir metr aralığa malikdir; məsafə hissəcik enerjisindən asılıdır. Beta hissəcikləri ionlaşdırıcı şüalanmanın bir növüdür və radiasiyadan qorunma məqsədləri üçün qamma şüalarından daha çox ionlaşan, lakin alfa hissəciklərindən daha az ionlaşan sayılırlar. İonlaşdırıcı təsir nə qədər yüksək olarsa, canlı toxumaya ziyan bir o qədər artır. == Beta şüalanması == === β - parçalanma (elektron emissiya) === Artıq neytronları olan qeyri-sabit bir atom nüvəsi bir neytronun bir protona, bir elektrona və bir elektron neytrinə çevrildiyi β - çürüməyə məruz qala bilər: n → p + e- + νe nuclear çürümə nüvə reaktorlarında istehsal olunan neytronla zəngin parçalanma yan məhsulları arasında tez-tez baş verir. Pulsuz neytronlar da bu proses vasitəsilə çürüyür. Bu proseslərin hər ikisi parçalanma-reaktor yanacaq çubuqları tərəfindən istehsal olunan çox sayda beta şüalarına və elektron antineutrinlərə kömək edir. === β + parçalanma (pozitron emissiya) === β + şüalanma pozitronların yayılması prosesidir. β + çürümə zamanı protonlardan biri neytrona , eletron neytrinə və pozitrona çevrilir: p → n + e+ + νe == Aşkarlama və ölçmə == Beta hissəciklərinin maddəyə təsir edən ionlaşdırıcı və ya həyəcanlandırıcı təsiri radiometrik aşkaretmə alətlərinin beta şüalanmasını aşkar və ölçmələri əsas proseslərdir.
Beta laktamazlar
Beta laktamazlar (β-laktamazlar) — bakterial fermentlər qrupu olub, beta laktamlı antibiotiklərin təsirini azaltmağa və sıfıra endirməyə qabil substant. Bu fermentlər sözügedən antibiotiklərə qarşı müqavimətli, dözümlü bakteriyaların əmələ gəlməsinə səbəb olurlar. == Katalizasiya reaksiyası == β-Laktamasların təsirindən hidrolitik laktam həlqəsinin açııaraq pozulması nəticəsində aralıq məhsulun, sonra isə öz-özünə dekarboksilləşmə nəticəsində son məhsulun alınması reaksiyası: Həlqə pozğunluğu aralıq məhsulu öz-özünə dekarboksilləşir. Bu zaman aralıq məhsulun orqanizmin zülaları ilə geridönməyən birləşmələr əmələ gətirərsə, bu allergik reaksiyaya səbəb ola bilər. Adətən bu cür tam potensiallı antigenlərə qarşı orqanizmin antitellər vasitəsilə dəf etmə mexanizmi işə düşmüş olur. Nəticə etibarilə sensiblizasiya reaksiyasının: dəri qıcıqlanmasından -övrədən tutmuş anafilaktik şokadək inkişafı mümkündür. == ESPL == ESPL (ing. Extended– spectrum Beta- Laktamase geniş spektrli beta laktamazlar) β laktam tərkibli antibiotiklərin geniş spektrini bölmək qabiliyyəti deməkdir. Enterobakteriyalar ailəsindən olan bakteriyalar beta laktamazlar adlanan enzim yaratma qabiliyyətinə malikdirlər ki, bu da antibiotik təsirini qüvvədən salmış olur. ESBL mikrob olmayıb, müxtəlif enterobakteriyaların birlikdə qazanmış olduğu özünə məxsusluq ya xasiyyətdir.
Beta particle
Beta hissəciklər- yüksək enerji və sürətli elektron və ya pozitronlardır. Beta hissəciklərin yayılma prosesi beta şüalanması adlanır. Enerji 0,5 MeV olan Beta hissəcikləri havada təxminən bir metr aralığa malikdir; məsafə hissəcik enerjisindən asılıdır. Beta hissəcikləri ionlaşdırıcı şüalanmanın bir növüdür və radiasiyadan qorunma məqsədləri üçün qamma şüalarından daha çox ionlaşan, lakin alfa hissəciklərindən daha az ionlaşan sayılırlar. İonlaşdırıcı təsir nə qədər yüksək olarsa, canlı toxumaya ziyan bir o qədər artır. == Beta şüalanması == === β - parçalanma (elektron emissiya) === Artıq neytronları olan qeyri-sabit bir atom nüvəsi bir neytronun bir protona, bir elektrona və bir elektron neytrinə çevrildiyi β - çürüməyə məruz qala bilər: n → p + e- + νe nuclear çürümə nüvə reaktorlarında istehsal olunan neytronla zəngin parçalanma yan məhsulları arasında tez-tez baş verir. Pulsuz neytronlar da bu proses vasitəsilə çürüyür. Bu proseslərin hər ikisi parçalanma-reaktor yanacaq çubuqları tərəfindən istehsal olunan çox sayda beta şüalarına və elektron antineutrinlərə kömək edir. === β + parçalanma (pozitron emissiya) === β + şüalanma pozitronların yayılması prosesidir. β + çürümə zamanı protonlardan biri neytrona , eletron neytrinə və pozitrona çevrilir: p → n + e+ + νe == Aşkarlama və ölçmə == Beta hissəciklərinin maddəyə təsir edən ionlaşdırıcı və ya həyəcanlandırıcı təsiri radiometrik aşkaretmə alətlərinin beta şüalanmasını aşkar və ölçmələri əsas proseslərdir.
Beta vulgaris
Adi çuğundur (lat. Beta vulgaris ) - çuğundur cinsinə aid bitki növü.
Beta Əjdaha
Beta Draconis — ikili bir ulduz və Draco şimal dairəvi plitələrində üçüncü parlaq ulduzdur. 2.79-da görülə bilən vizual ölçülüdür, Adi gözlə asanlıqla görülə bilən parlaqdır. Hipparcos astrometri peykindən parallax ölçmələrinə əsasəndir.Günəşdən təxminən 380 işıq ili (120 parsek) məsafəsində yerləşir. == Xüsusiyyətləri == İkili sistem hər dörd minillikdə və ya bir dəfə cırtdan bir yoldaş tərəfindən yaradılan parlaq nəhəngdən ibarətdir. Günəşlə müqayisədə, Beta Draconis A altı dəfə kütləsi və təxminən 40 qat radiuslu böyük bir ulduzdur. Bu ölçüdə Günəşin parlaqlığını 950 dəfə xarici zərfdən effektiv 5,160 K temperaturda, isə G tipli bir ulduzun sarı hündürlüyünə verir. Spektri II parlaq parlaqlıq göstərən II parlaqlıq sinfi ilə G2 II,-nin mükəmməl təsnifatına uyğun gəlir. Bu təxminən 67 milyon yaşındadır.
Beta əmsalı
Opsanus beta
Opsanus beta (lat. Opsanus beta) — heyvanlar aləminin xordalılar tipinin şüaüzgəclilər sinfinin batraxkimilər dəstəsinin batraxlar fəsiləsinin opsanus cinsinə aid heyvan növü.
Beta Vukanoviç
Beta Vukanoviç və yaxud Babette Baxmayer (serb. Бета Вукановић; 18 aprel 1872, Bamberq, Bavariya – 31 oktyabr 1972, Belqrad) — serb rəssamı, impressionizmin nümayəndəsi. Onun sonrakı əsərləri realist üslubda olub, lakin buna baxmayaraq həmişə impressionist palitrasını saxlayıb. == Həyatı == Beta Vukanoviç 18 aprel 1872-ci ildə Almaniya imperiyasının Bamberq şəhərində Babette Baxmayer (alm. Babette Bachmayer‎) adı ilə anadan olub. İbtidai məktəbi və qızlar liseyini bitirdikdən sonra 1890-cı ildə Münhendəki Karl Mar və Anton Ajbenin özəl rəssamlıq məktəbinə daxil olur. Studiyada Beta Risto Vukanovic ilə tanış olur və onlar 1898-ci ildə ailə qururlar. Cütlük bal ayı əvəzinə Belqrad gedir, dostları onlara sənətə marağı olmayan kiçik bir şəhər olduğunu desə də, Vukanoviçlər bu məsləhətə əhəmiyyət vermirlər. === Serbiyaya gəliş === Onlar 1898-ci ilin yayında Belqrada gəlirlər. Onlar gələndə paytaxt şərq şəhərindən Avropa şəhərinə çevrilmişdi.
Beta tərəzi
Beta Tərəzi (β Tərəzi, qısaldılmış Beta Lib, β Lib),Rəsmi olaraq (ing.Zubeneschamali /zuːˌbɛnɛʃəˈmeɪli/) adlı ("beta" təyin olunmasına baxmayaraq) Tərəzi bürcünün ən parlaq ulduzudur. Parallaks ölçmələrindən onun məsafəsini Günəşdən 185 işıq ili (57 parsek) kimi qiymətləndirmək olar. Bu ulduzun görünən vizual böyüklüyü 2,6-dır. Eratosfenə görə, Beta Tərəzi Antaresdən daha parlaq olduğu müşahidə edildi. Ptolemey 350 il sonra onun Antares qədər parlaq olduğunu söylədi. Uyğunsuzluq Antaresin daha parlaq olması ilə əlaqədar ola bilər, lakin bu dəqiq bilinmir. Bu, sadəcə olaraq, Beta Tərəzinin dəyişkən ulduz olması və 0,03 böyüklüyündə indiki dəyişkənliyi göstərməsi səbəb ola bilər. == Adı == β Tərəzi (latınca Beta Librae) ulduzun Bayer təyinatıdır.O, Ərəbcə الزُّبَانَى الشَمَالِي (al-zubānā al-šamāliyy) yaranan ənənəvi Zubeneschamali /ˌzuːbənˌɛʃəˈmeɪli/ (daha az yayılmış tərcümələr və ya pozğunluqlar) adını daşıyırdı" . Bu ad Tərəzi "əqrəbin caynaqlarını" təmsil edən bir dövrdə yaranmışdır. Ərəbcə al-kiffah aš-šamāliyy "şimal pan (tərəzi)" və Latın ekvivalenti Lanx Borealisdən olan Kiffa Borealis də var idi.
Arrestin beta 1
Arrestin beta 1 ARRB1 kimi də adlanır — insanlarda 11-ci xromosomun qısa qolunda olan tək bir gen tərəfindən kodlanmış zülal. == Funksiyası == Beta-arrestin zülal ailəsinin üzvlərinin G zülalı ilə əlaqəli reseptorların agonist vasitəçiliyi ilə desensitizasiyasında iştirak etdiyi və hormonlar, neyrotransmitterlər və ya duyğu siqnalları kimi stimullara hüceyrə reaksiyalarının spesifik şəkildə yatırılmasına səbəb olduğu düşünülür. Arrestin beta 1 sitozolik zülaldır və beta-adrenergik reseptorların beta-adrenergik reseptor kinaz (BARK) vasitəçiliyi ilə desensibilizasiyasında kofaktor kimi çıxış edir. Arrestin beta 1 mərkəzi sinir sistemi ilə yanaşı, periferik qan leykositlərində yüksək səviyyədə ifadə edilir və beləliklə, BARK/beta-arrestin sisteminin reseptor vasitəçiliyi ilə immun funksiyalarının tənzimlənməsində böyük rol oynadığına inanılır. Alternativ olaraq, arrestin beta 1-in müxtəlif izoformlarını kodlayan birləşdirilmiş transkriptlər təsvir edilmişdir, lakin onların dəqiq funksiyaları məlum deyil. Beta-arrestinin aralıq maddələri birləşdirən və reseptorları klatrin vasitəçiliyi ilə endositoza birləşdirərək G-protein siqnalını yönləndirə bilən bir çərçivə rolunu oynadığı göstərilir.
Arrestin beta 2
Arrestin beta 2, həmçinin arrestin beta-2 olaraq da bilinir — insanlarda ARRB2 geni ilə kodlanan hüceyrədaxili zülal. Arrestin beta 2 zülal ailəsinin üzvlərinin G zülalı ilə əlaqəli reseptorların agonist vasitəçiliyi ilə desensitizasiyasında iştirak etdiyi və hormonlar, neyrotransmitterlər və ya duyğu siqnalları kimi stimullara hüceyrə reaksiyalarının spesifik şəkildə yatırılmasına səbəb olduğu düşünülür. Arrestin beta 2 zülalı həmçinin müstəqil siqnal roluna malikdir. Arrestin beta 2, arrestin beta 1 kimi, beta-adrenergik reseptor funksiyasını in vitro inhibe edir. Mərkəzi sinir sistemində yüksək səviyyədə ifadə edilir və sinoptik reseptorların tənzimlənməsində rol oynaya bilər. Beyinlə yanaşı, arrestin beta 2 üçün tamamlayıcı DNT qalxanabənzər vəzindən təcrid edilmişdir və beləliklə, o, tirotropin reseptorlarının hormon-spesifik desensitizasiyasında da iştirak edə bilər. Bu gen üçün bir çox alternativ olaraq birləşdirilmiş transkript variantları tapılmışdır, lakin bəzi variantların tam aydın təbiəti müəyyən edilməmişdir.[13] Zülal 5-HT2A reseptor siqnalında agonist DOI ilə qarşılıqlı əlaqədə ola bilər. Arrestin beta 2 morfin və digər opioidlərə qarşı dözümlülüyün inkişafı üçün vacibdir.
Beta transformasiyaedici böyümə faktoru
β — transformasiyaedici böyümə faktorları proteinlərdirlər və sitokinlərin bir qrupudurlar. Onlara bu ad kultural mühitdə normal hüceyrələrin fenotiplərini dəyişdirə bilmə xüsusiyyətlərinin olmasına görə verilib. β transformasiya edici böyümə faktoru 3 izoformada mövcuddur və molekul kütləsi 50KDa a bərabər iki homodimerdən təşkil olunmuşdur. β transformasiyaedici böyümə faktorunun produsentlərinə, bir sıra hüceyrələr , o cümlədən , stromal hüceyrələr, makrofaqlar və müxtəlif növ şiş hüceyrələri daxildirlər. O, qeyri aktiv formada sintez olunur, proteazaların hidrolitik təsirindən aktivləşdikdən sonra hüceyrəarası matriksin kompanentləri və α makroqlobulin molekulları ilə birləşir. İmmun sistemində β-transformasiyaedici böyümə faktorları özünü supressiv bir faktor kimi aparır. O, hemopoez prosesinə, iltihab sitokinlərinin sintezinə, limfositlərin interleykin-2,4 və 7 qarşı reaksiyalarına, təbii killer və T-sitotoksik hüceyrələrin formalaşmasına neqativ təsir göstərir. Bununla yanaşı, β tansformasiyaedici böyümə faktoru hüceyrəarası matriks zülüllarının sintezini, yaraların sağalmasını və anabolik prosesləri sürətləndirir. Onun differensisasiya təbiətli təsiri də məlumdur. Məsələn:o, plazmatik B hüceyrələrində immunoqlobulinlərin sintezini İg A istiqamətində yönəltməklə və İL-10 la birlikdə onun ifrazını 10 dəfə artırmaqla selikli qişanın müdafiəsini gücləndirə bilir.
Passiflora hederifolia var. beta
Infraqırmızı spektroskopiya üsulu ilə üzvi maddələrin tədqiqi
İnfraqırmızı spektroskopiya — infraqırmızı şüaların təsiri ilə maddələrin tərkibindəki dəyişikliklərin təyin edilməsində istifadə olunan spektral analiz üsullarından biridir. Hələ 1882–1900-cü illərdə Edvard Festinq 52 birləşmənin "IQ" spektrini almış və müşahidə olunan udmanın bu molekullardakı funksional qruplarla əlaqəsini göstərmişdir. Bu üsulun daha da təkmilləşməsində Amerika fiziki Uilyam Kobelsin böyük əməyi oldu. Hələ 1903-cü ildə o, NaCl prizmasından istifadə edərək yüzlərlə üzvi və qeyri-üzvi maddələrin tam infraqırmızı spektrlərini almışdır. İQ spektroskopiyanın inkişafı İQ interferometrlərinin meydana gəlməsi ilə bağlı olmuşdur ki, bunlar da 70-ci illərdə təkmilləşərək kompüterləşmiş və Furye çevrici ilə təchiz olunmuş halda dünya bazarlarına çıxarılmışdır. Spektrlərdəki ehtizazi və fırlanma dalğa uzunluğu 1–50µ arasındadır. Mineralogiyada və kristalloqrafiyada infraqırmızı spektroskopiya mineral qarışıqlarının kəmiyyət analizi və tutuşdurulması; mineralın quruluşundakı H2O-nun təbiətini müəyyən etmək, onların əmələ gəlməsində bir kriteriya kimi quruluşun nizamlanma dərəcəsini araşdırmaq üçün və başqa hallarda istifadə olunur. Spektroskopiya maddə ilə elektromaqnit şüaların qarşılıqlı təsirini, maddənin struktur quruluşunu və onu təşkil edən atomların və molekulların öyrənilməsidir. Spektroskopiya elektromaqnit şüalanmanın – qamma şüaların, X-şüaların (rentgen şüaları), infraqırmızı şüaların, görünən və ultrabənövşəyi şüaların, mikrodalğanın və radio tezliklərin bütün sahəsini istifadə edir. İnfraqırmızı spektroskopiya spektroskopiyanın bir bölməsidir ki, infraqırmızı diapazonda üzvi və qeyri-üzvi birləşmələrin buraxılma, udulma və əksolunma spektrləri əldə edilir və araşdırılır.
İnfraqırmızı spektroskopiya üsulu ilə üzvi maddələrin tədqiqi
İnfraqırmızı spektroskopiya — infraqırmızı şüaların təsiri ilə maddələrin tərkibindəki dəyişikliklərin təyin edilməsində istifadə olunan spektral analiz üsullarından biridir. Hələ 1882–1900-cü illərdə Edvard Festinq 52 birləşmənin "IQ" spektrini almış və müşahidə olunan udmanın bu molekullardakı funksional qruplarla əlaqəsini göstərmişdir. Bu üsulun daha da təkmilləşməsində Amerika fiziki Uilyam Kobelsin böyük əməyi oldu. Hələ 1903-cü ildə o, NaCl prizmasından istifadə edərək yüzlərlə üzvi və qeyri-üzvi maddələrin tam infraqırmızı spektrlərini almışdır. İQ spektroskopiyanın inkişafı İQ interferometrlərinin meydana gəlməsi ilə bağlı olmuşdur ki, bunlar da 70-ci illərdə təkmilləşərək kompüterləşmiş və Furye çevrici ilə təchiz olunmuş halda dünya bazarlarına çıxarılmışdır. Spektrlərdəki ehtizazi və fırlanma dalğa uzunluğu 1–50µ arasındadır. Mineralogiyada və kristalloqrafiyada infraqırmızı spektroskopiya mineral qarışıqlarının kəmiyyət analizi və tutuşdurulması; mineralın quruluşundakı H2O-nun təbiətini müəyyən etmək, onların əmələ gəlməsində bir kriteriya kimi quruluşun nizamlanma dərəcəsini araşdırmaq üçün və başqa hallarda istifadə olunur. Spektroskopiya maddə ilə elektromaqnit şüaların qarşılıqlı təsirini, maddənin struktur quruluşunu və onu təşkil edən atomların və molekulların öyrənilməsidir. Spektroskopiya elektromaqnit şüalanmanın – qamma şüaların, X-şüaların (rentgen şüaları), infraqırmızı şüaların, görünən və ultrabənövşəyi şüaların, mikrodalğanın və radio tezliklərin bütün sahəsini istifadə edir. İnfraqırmızı spektroskopiya spektroskopiyanın bir bölməsidir ki, infraqırmızı diapazonda üzvi və qeyri-üzvi birləşmələrin buraxılma, udulma və əksolunma spektrləri əldə edilir və araşdırılır.

Oxşar sözlər

#beta-spektroskopiya nədir? #beta-spektroskopiya sözünün mənası #beta-spektroskopiya nə deməkdir? #beta-spektroskopiya sözünün izahı #beta-spektroskopiya sözünün yazılışı #beta-spektroskopiya necə yazılır? #beta-spektroskopiya sözünün düzgün yazılışı #beta-spektroskopiya leksik mənası #beta-spektroskopiya sözünün sinonimi #beta-spektroskopiya sözünün yaxın mənalı sözlər #beta-spektroskopiya sözünün əks mənası #beta-spektroskopiya sözünün etimologiyası #beta-spektroskopiya sözünün orfoqrafiyası #beta-spektroskopiya rusca #beta-spektroskopiya inglisça #beta-spektroskopiya fransızca #beta-spektroskopiya sözünün istifadəsi #sözlük